There are less transcendental numbers than rational numbers
نویسنده
چکیده
According to a basic theorem of transfinite set theory the set of irrational numbers is uncountable, while the set of rational numbers is countable. This is contradicted by the fact that any pair of irrational numbers is separated by at least one rational number. Hence, in the interval [0,1] there exist more rational numbers than irrational numbers.
منابع مشابه
Math 249 A Fall 2010 : Transcendental Number Theory
α is algebraic if there exists p ∈ Z[x], p 6= 0 with p(α) = 0, otherwise α is called transcendental . Cantor: Algebraic numbers are countable, so transcendental numbers exist, and are a measure 1 set in [0, 1], but it is hard to prove transcendence for any particular number. Examples of (proported) transcendental numbers: e, π, γ, e, √ 2 √ 2 , ζ(3), ζ(5) . . . Know: e, π, e, √ 2 √ 2 are transce...
متن کاملOn the rational approximation to the Thue–Morse–Mahler number
has infinitely many solutions in rational numbers p/q. It follows from the theory of continued fractions that μ(ξ) is always greater than or equal to 2, and an easy covering argument shows that μ(ξ) is equal to 2 for almost all real numbers ξ (with respect to the Lebesgue measure). Furthermore, Roth’s theorem asserts that the irrationality exponent of every algebraic irrational number is equal ...
متن کاملGalois Theory, Motives and Transcendental Numbers
From its early beginnings up to nowadays, algebraic number theory has evolved in symbiosis with Galois theory: indeed, one could hold that it consists in the very study of the absolute Galois group of the field of rational numbers. Nothing like that can be said of transcendental number theory. Nevertheless, couldn’t one associate conjugates and a Galois group to transcendental numbers such as π...
متن کاملAll Liouville Numbers are Transcendental
In this Mizar article, we complete the formalization of one of the items from Abad and Abad’s challenge list of “Top 100 Theorems” about Liouville numbers and the existence of transcendental numbers. It is item #18 from the “Formalizing 100 Theorems” list maintained by Freek Wiedijk at http: //www.cs.ru.nl/F.Wiedijk/100/. Liouville numbers were introduced by Joseph Liouville in 1844 [15] as an ...
متن کاملIrrationality Measures of log 2 and π/√3
1. Irrationality Measures An irrationality measure of x ∈ R \Q is a number μ such that ∀ > 0,∃C > 0,∀(p, q) ∈ Z, ∣∣∣∣x− pq ∣∣∣∣ ≥ C qμ+ . This is a way to measure how well the number x can be approximated by rational numbers. The measure is effective when C( ) is known. We denote inf {μ | μ is an irrationality measure of x } by μ(x), and we call it the irrationality measure of x. By definition,...
متن کامل